Facet dependent ultralow thermal conductivity of zinc oxide coated silver fabric for thermoelectric devices
Experimental methods
Fabrication of ZnO nanostructures on Ag fabric via hydrothermal method
-
Kim, H., Wang, Z., Hedhili, M. N., Wehbe, N. & Alshareef, H. N. Oxidant-dependent thermoelectric properties of undoped ZnO films by atomic layer deposition. Chem. Mater. 29, 2794–2802 (2017).
-
Shi, X. L., Zou, J. & Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).
-
Li, G. et al. Effect of nanowires in microporous structures on the thermoelectric properties of oxidized Sb-doped ZnO film. J. Eur. Ceram. Soc. 38, 1608–1613 (2018).
-
Yang, Y. et al. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano. 6, 6984–6989 (2012).
-
Anatychuk, L. et al. 200 Years of Thermoelectricity: An Historical Journey Through the Science and Technology of Thermoelectric Materials (1821-2021). Springer Cham, (2024).
-
Sulaiman, S., Izman, S., Uday, M. B. & Omar, M. F. Review on grain size effects on thermal conductivity in ZnO thermoelectric materials. RSC Adv. 12, 5428–5438 Preprint at https://doi.org/10.1039/d1ra06133j(2022).
-
Tran Nguyen, N. H. et al. Thermoelectric properties of Indium and Gallium dually doped ZnO thin films. ACS Appl. Mater. Interfaces. 8, 33916–33923 (2016).
-
Fader, M., Cranmer, C., Lawford, R. & Engel-Cox, J. Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets. Front. Environ. Sci. 6, 410179 (2018).
-
Zakharchuk, K. V. et al. A self-forming nanocomposite concept for ZnO-based thermoelectrics. J. Mater. Chem. Mater. 6, 13386–13396 (2018).
-
Zong, P. et al. Graphene-based thermoelectrics. ACS Appl. Energy Mater. 3, 2224–2239 (2020).
-
Biswas, S. et al. Selective enhancement in phonon scattering leads to a high thermoelectric figure-of-merit in graphene oxide-encapsulated ZnO nanocomposites. ACS Appl. Mater. Interfaces. 13, 23771–23786 (2021).
-
Ovsyannikov, S. V. & Shchennikov, V. V. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem. Mater. 22, 635–647 Preprint at https://doi.org/10.1021/cm902000x (2010).
-
Salleh, F. et al. Influence of TiO2 layer’s nanostructure on its thermoelectric power factor. Appl. Surf. Sci. 497, 143736 (2019).
-
Veluswamy, P. et al. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohydr. Polym. 157, 1801–1808 (2017).
-
Wisz, G., Virt, I., Sagan, P., Potera, P. & Yavorskyi, R. Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 12, 253 (2017).
-
Ikeda, H. et al. Thermoelectric characteristics of nanocrystalline ZnO grown on fabrics for wearable power generator. J. Phys. Conf. Ser. 1052, 012017 (2018).
-
Veluswamy, P., Sathiyamoorthy, S., Ikeda, H., Elayaperumal, M. & Maaza, M. Recent progress in nanostructured zinc oxide grown on fabric for wearable thermoelectric power generator with UV shielding. Wearable Technologies https://doi.org/10.5772/intechopen.76672 (2018).
-
Culebras, M., Gómez, C. M. & Cantarero, A. Thermoelectric measurements of PEDOT:PSS/expanded graphite composites. J. Mater. Sci. 48, 2855–2860 (2013).
-
Jood, P. et al. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11, 4337–4342 (2011).
-
Brockway, L., Vasiraju, V., Sunkara, M. K. & Vaddiraju, S. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: Nanoscale effects and resonant-level scattering. ACS Appl. Mater. Interfaces. 6, 14923–14930 (2014).
-
ur Rehman, U. et al. Effect of Ni and Mn dopant on thermoelectric power generation performance of ZnO nanostructures synthesized via hydrothermal method. Mater. Chem. Phys. 304, 127907 (2023).
-
Jin, Y. et al. Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals. J. Appl. Phys. 109, 053521 (2011).
-
Han, L. et al. Effects of morphology on the thermoelectric properties of Al-doped ZnO. RSC Adv. 4, 12353–12361 (2014).
-
Ghahari, S. A., Ghafari, E. & Lu, N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting. Constr. Build. Mater. 146, 755–763 (2017).
-
Chen, X. et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surf. Coat. Technol. 467, 129701 (2023).
-
Yan, L. et al. Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces. 14, 34562–34570 (2022).
-
Tamseel, M., Mahmood, K., Ali, A., Javaid, K. & Mufti, H. Controlled growth of Ag-ZnO thin films by thermal evaporation technique for optimized thermoelectric power generation. J. Alloys Compd. 938, 168507 (2023).
-
Fan, S. et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. J. Adv. Ceram. 11, 1932–1943 (2022).
-
Shen, S. et al. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Appl. Surf. Sci. 414, 197–204 (2017).
-
Fan, X. A. et al. Preferential orientation and thermoelectric properties of p-type Bi0.4Sb1.6Te3 system alloys by mechanical alloying and equal channel angular extrusion. J. Alloys Compd. 461, 9–13 (2008).
-
He, Y. et al. Crystal-plane dependence of critical concentration for nucleation on hydrothermal ZnO nanowires. J. Phys. Chem. C. 117, 1197–1203 (2013).
-
Sansoz, F. Surface faceting dependence of thermal transport in silicon nanowires. Nano Lett. 11, 5378–5382 (2011).
-
Aksamija, Z. & Knezevic, I. Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B. 82, 045319 (2010).
-
Rivero, P. J., Urrutia, A., Goicoechea, J. & Arregui, F. J. nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10, 1–22 Preprint at https://doi.org/10.1186/s11671-015-1195-6 (2015).
-
Barani, H. Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New. J. Chem. 38, 4365–4370 (2014).
-
Zhang, P., Deng, B., Sun, W., Zheng, Z. & Liu, W. Fiber-based thermoelectric materials and devices for wearable electronics. Micromachines. 12 (8), 869 Preprint at https://doi.org/10.3390/mi12080869 (2021).
-
Yadav, A. et al. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci. 29, 641–645 (2006).
-
Pandiyarasan, V. et al. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl. Surf. Sci. 418, 352–361 (2017).
-
Khan, F. et al. Seebeck coefficient of flexible carbon fabric for wearable thermoelectric device. IEICE Trans. Electron. E101C, 343–346 (2018).
-
Veluswamy, P. et al. A novel investigation on ZnO nanostructures on carbon fabric for harvesting thermopower on textile. Appl. Surf. Sci. 496, 143658 (2019).
-
Shalini, V. et al. Solution processed polyaniline anchored graphene on conductive carbon fabric for high performance wearable thermoelectric generators. Mater. Chem. Phys. 306, 128022 (2023).
-
Ullah, I. et al. Investigating the potential of AgZnO thin film composites for waste heat recovery using Seebeck data. Opt. Mater. 127, 112318 (2022).
-
Zheng, Z. H. et al. Significantly (00l)-textured Ag2Se thin films with excellent thermoelectric performance for flexible power applications. J. Mater. Chem. Mater. 10, 21603–21610 (2022).
-
Shen, S. et al. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Appl Surf Sci 414, 197–204 (2017).
-
Tan, M., Deng, Y. & Hao, Y. Enhanced thermoelectric properties and layered structure of Sb2Te3 films induced by special (0 0 l) crystal plane. Chem. Phys. Lett. 584, 159–164 (2013).
-
Abutaha, A. I., Kumar, S., Alshareef, H. N. & S. R. & Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films. Appl. Phys. Lett. 102, 053507 (2013).
-
Chandrasekar, L. P., Veluswamy, P., Ikeda, H. & Mohandos, S. Enhancing Thermoelectric Performance in Flexible Fabric-based Mo-doped CuAl2O4: Insights into Carrier Type Modification and Electrical Conductivity Optimization. Ceram. Int. 50, 48330–48342 (2024).
-
Zang, J. et al. Effect of post-annealing treatment on the thermoelectric properties of Ag2Se flexible thin film prepared by magnetron sputtering method. Results Phys 45, (2023).
-
Chandra, S. et al. Modular Nanostructures Facilitate Low Thermal Conductivity and Ultra‐High Thermoelectric Performance in n ‐Type SnSe. Advanced Materials 34, (2022).
-
Feng, Y. et al. Temperature dependent thermoelectric properties of cuprous delafossite oxides. Compos B Eng 156, 108–112 (2019).
-
Mousa, M. A., Bayoumy, W. A. A. & Khairy, M. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods. Mater Res Bull 48, 4576–4582 (2013).
-
Roza, L. et al. Effect of molar ratio of zinc nitrate: hexamethylenetetramine on the properties of ZnO thin film nanotubes and nanorods and the performance of dye-sensitized solar cell (DSSC). Journal of Materials Science: Materials in Electronics 26, 7955–7966 (2015).
-
Coetzee, D., Venkataraman, M., Militky, J. & Petru, M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers, 12, 742 (2020).
-
Muniswami Naidu, R. V. et al. Grain Boundary Carrier Scattering in ZnO Thin Films: a Study by Temperature-Dependent Charge Carrier Transport Measurements. J Electron Mater 41, 660–664 (2012).
-
Dalola, S. et al. Seebeck effect in ZnO nanowires for micropower generation. Procedia Eng 25, 1481–1484 (2011).
-
Liu, Y., Bian, Y., Chernatynskiy, A. & Han, Z. Effect of grain boundary angle on the thermal conductivity of nanostructured bicrystal ZnO based on the molecular dynamics simulation method. Int J Heat Mass Transf 145, 118791 (2019).
-
Wolf, M. W. & Martin, J. J. Low temperature thermal conductivity of zinc oxide. Physica Status Solidi (a) 17, 215–220 (1973).
-
Guan, W., Zhang, L., Wang, C. & Wang, Y. Theoretical and experimental investigations of the thermoelectric properties of Al-, Bi- and Sn-doped ZnO. Mater Sci Semicond Process 66, 247–252 (2017).
-
Wang, H., Qin, G., Li, G., Wang, Q. & Hu, M. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence. Physical Chemistry Chemical Physics 19, 12882–12889 (2017).
-
Zhang, D. B., Li, H. Z., Zhang, B. P., Liang, D. D. & Xia, M. Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity. RSC Adv 7, 10855–10864 (2017).
-
Manyedi, S., Anku, W. W., Kiarii, E. M. & Govender, P. P. Thermoelectric, electronic, and optical response of nanostructured Al-doped ZnO @ 2D-TiC composite. ChemistrySelect. 5, 13144–13154 (2020).
-
Sethi, V. et al. Ultralow thermal conductivity and improved thermoelectric properties of Al-doped ZnO by in situ O2 plasma treatment. Small Struct. 4 (11), 2300140 https://doi.org/10.1002/sstr.202300140 (2023).