Digital Technology

Facet dependent ultralow thermal conductivity of zinc oxide coated silver fabric for thermoelectric devices

Experimental methods

Fabrication of ZnO nanostructures on Ag fabric via hydrothermal method

Schematic representation of the steps involved in the fabrication of the silver fabric coated with ZnO nanostructures, where zinc nitrate hexahydrate (ZNH) and hexamethylenetetramine (HMT) are used as precursors for the synthesis and growth of ZnO directly on the Ag fabric via a hydrothermal method.

figure 1

Fig. 1
  1. Kim, H., Wang, Z., Hedhili, M. N., Wehbe, N. & Alshareef, H. N. Oxidant-dependent thermoelectric properties of undoped ZnO films by atomic layer deposition. Chem. Mater. 29, 2794–2802 (2017).

  2. Shi, X. L., Zou, J. & Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

  3. Li, G. et al. Effect of nanowires in microporous structures on the thermoelectric properties of oxidized Sb-doped ZnO film. J. Eur. Ceram. Soc. 38, 1608–1613 (2018).

  4. Yang, Y. et al. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano. 6, 6984–6989 (2012).

  5. Anatychuk, L. et al. 200 Years of Thermoelectricity: An Historical Journey Through the Science and Technology of Thermoelectric Materials (1821-2021). Springer Cham, (2024).

  6. Sulaiman, S., Izman, S., Uday, M. B. & Omar, M. F. Review on grain size effects on thermal conductivity in ZnO thermoelectric materials. RSC Adv. 12, 5428–5438 Preprint at https://doi.org/10.1039/d1ra06133j(2022).

  7. Tran Nguyen, N. H. et al. Thermoelectric properties of Indium and Gallium dually doped ZnO thin films. ACS Appl. Mater. Interfaces. 8, 33916–33923 (2016).

  8. Fader, M., Cranmer, C., Lawford, R. & Engel-Cox, J. Toward an understanding of synergies and trade-offs between water, energy, and food SDG targets. Front. Environ. Sci. 6, 410179 (2018).

  9. Zakharchuk, K. V. et al. A self-forming nanocomposite concept for ZnO-based thermoelectrics. J. Mater. Chem. Mater. 6, 13386–13396 (2018).

  10. Zong, P. et al. Graphene-based thermoelectrics. ACS Appl. Energy Mater. 3, 2224–2239 (2020).

  11. Biswas, S. et al. Selective enhancement in phonon scattering leads to a high thermoelectric figure-of-merit in graphene oxide-encapsulated ZnO nanocomposites. ACS Appl. Mater. Interfaces. 13, 23771–23786 (2021).

  12. Ovsyannikov, S. V. & Shchennikov, V. V. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem. Mater. 22, 635–647 Preprint at https://doi.org/10.1021/cm902000x (2010).

  13. Salleh, F. et al. Influence of TiO2 layer’s nanostructure on its thermoelectric power factor. Appl. Surf. Sci. 497, 143736 (2019).

  14. Veluswamy, P. et al. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. Carbohydr. Polym. 157, 1801–1808 (2017).

  15. Wisz, G., Virt, I., Sagan, P., Potera, P. & Yavorskyi, R. Structural, optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 12, 253 (2017).

  16. Ikeda, H. et al. Thermoelectric characteristics of nanocrystalline ZnO grown on fabrics for wearable power generator. J. Phys. Conf. Ser. 1052, 012017 (2018).

  17. Veluswamy, P., Sathiyamoorthy, S., Ikeda, H., Elayaperumal, M. & Maaza, M. Recent progress in nanostructured zinc oxide grown on fabric for wearable thermoelectric power generator with UV shielding. Wearable Technologies https://doi.org/10.5772/intechopen.76672 (2018).

  18. Culebras, M., Gómez, C. M. & Cantarero, A. Thermoelectric measurements of PEDOT:PSS/expanded graphite composites. J. Mater. Sci. 48, 2855–2860 (2013).

  19. Jood, P. et al. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11, 4337–4342 (2011).

  20. Brockway, L., Vasiraju, V., Sunkara, M. K. & Vaddiraju, S. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: Nanoscale effects and resonant-level scattering. ACS Appl. Mater. Interfaces. 6, 14923–14930 (2014).

  21. ur Rehman, U. et al. Effect of Ni and Mn dopant on thermoelectric power generation performance of ZnO nanostructures synthesized via hydrothermal method. Mater. Chem. Phys. 304, 127907 (2023).

  22. Jin, Y. et al. Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals. J. Appl. Phys. 109, 053521 (2011).

  23. Han, L. et al. Effects of morphology on the thermoelectric properties of Al-doped ZnO. RSC Adv. 4, 12353–12361 (2014).

  24. Ghahari, S. A., Ghafari, E. & Lu, N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting. Constr. Build. Mater. 146, 755–763 (2017).

  25. Chen, X. et al. Fabrication of ZnO@Fe2O3 superhydrophobic coatings with high thermal conductivity. Surf. Coat. Technol. 467, 129701 (2023).

  26. Yan, L. et al. Highly thermoelectric ZnO@MXene (Ti3C2Tx) composite films grown by atomic layer deposition. ACS Appl. Mater. Interfaces. 14, 34562–34570 (2022).

  27. Tamseel, M., Mahmood, K., Ali, A., Javaid, K. & Mufti, H. Controlled growth of Ag-ZnO thin films by thermal evaporation technique for optimized thermoelectric power generation. J. Alloys Compd. 938, 168507 (2023).

  28. Fan, S. et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. J. Adv. Ceram. 11, 1932–1943 (2022).

  29. Shen, S. et al. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Appl. Surf. Sci. 414, 197–204 (2017).

  30. Fan, X. A. et al. Preferential orientation and thermoelectric properties of p-type Bi0.4Sb1.6Te3 system alloys by mechanical alloying and equal channel angular extrusion. J. Alloys Compd. 461, 9–13 (2008).

  31. He, Y. et al. Crystal-plane dependence of critical concentration for nucleation on hydrothermal ZnO nanowires. J. Phys. Chem. C. 117, 1197–1203 (2013).

  32. Sansoz, F. Surface faceting dependence of thermal transport in silicon nanowires. Nano Lett. 11, 5378–5382 (2011).

  33. Aksamija, Z. & Knezevic, I. Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B. 82, 045319 (2010).

  34. Rivero, P. J., Urrutia, A., Goicoechea, J. & Arregui, F. J. nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10, 1–22 Preprint at https://doi.org/10.1186/s11671-015-1195-6 (2015).

  35. Barani, H. Surface activation of cotton fiber by seeding silver nanoparticles and in situ synthesizing ZnO nanoparticles. New. J. Chem. 38, 4365–4370 (2014).

  36. Zhang, P., Deng, B., Sun, W., Zheng, Z. & Liu, W. Fiber-based thermoelectric materials and devices for wearable electronics. Micromachines. 12 (8), 869 Preprint at https://doi.org/10.3390/mi12080869 (2021).

  37. Yadav, A. et al. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci. 29, 641–645 (2006).

  38. Pandiyarasan, V. et al. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications. Appl. Surf. Sci. 418, 352–361 (2017).

  39. Khan, F. et al. Seebeck coefficient of flexible carbon fabric for wearable thermoelectric device. IEICE Trans. Electron. E101C, 343–346 (2018).

  40. Veluswamy, P. et al. A novel investigation on ZnO nanostructures on carbon fabric for harvesting thermopower on textile. Appl. Surf. Sci. 496, 143658 (2019).

  41. Shalini, V. et al. Solution processed polyaniline anchored graphene on conductive carbon fabric for high performance wearable thermoelectric generators. Mater. Chem. Phys. 306, 128022 (2023).

  42. Ullah, I. et al. Investigating the potential of AgZnO thin film composites for waste heat recovery using Seebeck data. Opt. Mater. 127, 112318 (2022).

  43. Zheng, Z. H. et al. Significantly (00l)-textured Ag2Se thin films with excellent thermoelectric performance for flexible power applications. J. Mater. Chem. Mater. 10, 21603–21610 (2022).

  44. Shen, S. et al. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Appl Surf Sci 414, 197–204 (2017).

  45. Tan, M., Deng, Y. & Hao, Y. Enhanced thermoelectric properties and layered structure of Sb2Te3 films induced by special (0 0 l) crystal plane. Chem. Phys. Lett. 584, 159–164 (2013).

  46. Abutaha, A. I., Kumar, S., Alshareef, H. N. & S. R. & Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films. Appl. Phys. Lett. 102, 053507 (2013).

  47. Chandrasekar, L. P., Veluswamy, P., Ikeda, H. & Mohandos, S. Enhancing Thermoelectric Performance in Flexible Fabric-based Mo-doped CuAl2O4: Insights into Carrier Type Modification and Electrical Conductivity Optimization. Ceram. Int. 50, 48330–48342 (2024).

  48. Zang, J. et al. Effect of post-annealing treatment on the thermoelectric properties of Ag2Se flexible thin film prepared by magnetron sputtering method. Results Phys 45, (2023).

  49. Chandra, S. et al. Modular Nanostructures Facilitate Low Thermal Conductivity and Ultra‐High Thermoelectric Performance in n ‐Type SnSe. Advanced Materials 34, (2022).

  50. Feng, Y. et al. Temperature dependent thermoelectric properties of cuprous delafossite oxides. Compos B Eng 156, 108–112 (2019).

  51. Mousa, M. A., Bayoumy, W. A. A. & Khairy, M. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods. Mater Res Bull 48, 4576–4582 (2013).

  52. Roza, L. et al. Effect of molar ratio of zinc nitrate: hexamethylenetetramine on the properties of ZnO thin film nanotubes and nanorods and the performance of dye-sensitized solar cell (DSSC). Journal of Materials Science: Materials in Electronics 26, 7955–7966 (2015).

  53. Coetzee, D., Venkataraman, M., Militky, J. & Petru, M. Influence of Nanoparticles on Thermal and Electrical Conductivity of Composites. Polymers, 12, 742 (2020).

  54. Muniswami Naidu, R. V. et al. Grain Boundary Carrier Scattering in ZnO Thin Films: a Study by Temperature-Dependent Charge Carrier Transport Measurements. J Electron Mater 41, 660–664 (2012).

  55. Dalola, S. et al. Seebeck effect in ZnO nanowires for micropower generation. Procedia Eng 25, 1481–1484 (2011).

  56. Liu, Y., Bian, Y., Chernatynskiy, A. & Han, Z. Effect of grain boundary angle on the thermal conductivity of nanostructured bicrystal ZnO based on the molecular dynamics simulation method. Int J Heat Mass Transf 145, 118791 (2019).

  57. Wolf, M. W. & Martin, J. J. Low temperature thermal conductivity of zinc oxide. Physica Status Solidi (a) 17, 215–220 (1973).

  58. Guan, W., Zhang, L., Wang, C. & Wang, Y. Theoretical and experimental investigations of the thermoelectric properties of Al-, Bi- and Sn-doped ZnO. Mater Sci Semicond Process 66, 247–252 (2017).

  59. Wang, H., Qin, G., Li, G., Wang, Q. & Hu, M. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence. Physical Chemistry Chemical Physics 19, 12882–12889 (2017).

  60. Zhang, D. B., Li, H. Z., Zhang, B. P., Liang, D. D. & Xia, M. Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity. RSC Adv 7, 10855–10864 (2017).

  61. Manyedi, S., Anku, W. W., Kiarii, E. M. & Govender, P. P. Thermoelectric, electronic, and optical response of nanostructured Al-doped ZnO @ 2D-TiC composite. ChemistrySelect. 5, 13144–13154 (2020).

  62. Sethi, V. et al. Ultralow thermal conductivity and improved thermoelectric properties of Al-doped ZnO by in situ O2 plasma treatment. Small Struct. 4 (11), 2300140 https://doi.org/10.1002/sstr.202300140 (2023).

LEAVE A RESPONSE

Your email address will not be published. Required fields are marked *